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1. Qualitative Examples
Fig 1 shows an example of one of the cases where the LSVRU model (left image) predicts a head class (to the left of ) that

doesn’t fit well while the LSVRU + VilHub model (right image) instead predicts a tail class (eating) which is more accurate
and descriptive in this case.

Similarly, Fig 2 shows an example of one of the cases where the LSVRU model (left image) predicts a head class (to the
right of ) that doesn’t fit well while the LSVRU + RelMix + VilHub model (right image) instead predicts a tail class (holding)
which seems more suitable and descriptive for the particular triplet in question.

Fig 3 shows a failure case on the head, when the LSVRU + VilHub predicte a tail class while the correct class is a head
class. More qualitative examples can be found in the attached video.

1

https://github.com/Vision-CAIR/LTVRR


Figure 1: A qualitative example showing how the model with the VilHub loss performs better on tail relation classes. Blue
is subject, purple is relation, and orange is object. The left image is the LSVRU model, and the right image is LSVRU +
ViLHub model

Figure 2: A qualitative example showing how the model with the RelMix augmentation and VilHub loss performs better on
tail relation classes. The left image is the LSVRU model, and the right image is LSVRU + RelMix + VilHub model

2. Implementation Details
Visual Embedding sub-network. Similar to [6, 8], we learn embeddings for subject and object in a separate semantic
space from the relation space. More concretely, we first get a global feature map of an input image processing in through a
CNN (conv1 1 to conv5 3 of VGG16, then we perform ROI-pooling of subject, relation and object features to get zs, zp,
zo with the corresponding regions RS , RP , RO. Each branch followed by two fully connected layers which output three
intermediate hidden features hs2, hp2, ho2. For the subject/object branch, a fully connected layer ws

3 is added to get the visual
embedding xs, and similarly for the object branch to get xo. Since we expect the network to recognition the object whether it
appeared as as a subject or an object in a relationship, all the parameters of both branches are shared. Since involving relation
features for subject/object embeddings may undesirably entangling the two spaces, For the relation branch following [8], we
apply an effective two-level feature fusion to finally get the relation embedding xp.
Language Embedding sub-network. On the language side, we feed word vectors of subject, relation and object labels into
a two-layer neural network of one or two fc layers which outputs the final embeddings. Similar to the visual module, we
share subject and object branches share weights while the relation branch is unshared. The purpose of this module is to map



Figure 3: A qualitative example showing how the model with the VilHub sometimes fails by predicting a tail class instead of
a head class. The left image is the LSVRU model, and the right image is LSVRU + ViLHub model

word vectors into an embedding space that is more discriminative than the raw word vector space while preserving semantic
similarity. During training, we feed the ground-truth labels of each relationship triplet as well as labels of negative classes
into the semantic module, as the following subsection describes; during testing, we feed the whole sets of object and relation
labels into it for nearest neighbors searching among all the labels to get the top k as our prediction.
Language and Visual Context Word Embeddings. The language sub-network takes as an input skip-gram word Embed-
dings, which tries to maximize classification of a word based on another word in the same context. We performed experiments
with two skip-gram models trained on language and visual contexts. The language word embedding model is provided by
word2vec [5], pre-trained on Google News corpus as context. The second visual word embedding model is trained with the
same loss of a skip-gram word2vec model where the context is defined as the training relationship instances. The optimiza-
tion maximizes the likelihoods of each relationship element given the other two (e.g., each of S, R, and O given SO, RO, SR,
respectively).

3. Hyperparameters
All models are trained with a base learning rate LR = 0.01 on 8 V100 gpus with a batch size of 1 image per batch and

512 boxes within a single image per batch. All models trained on GQA-LT were trained for 12 epochs, and all models trained
on VG8K-LT were trained for 8 epochs. Models trained on GQA-LT were started with a random seed of 0 (for Numpy and
Pytorch), and models trained on VG8K-LT were started with a seed of 3 (for Numpy and Pytorch). The train/val/test splits
for both datasets are provided with the attached code.

4. Many, Medium, Few splits for GQA-LT and VG8K-LT
As discussed in the main paper, we split VG8K-LT data into many, medium, and few shots based frequency percentiles,

many: top 5% most frequent classes, medium: middle 15%, and few: bottom 80%. Here we will give details on the range of
classes withing each split for both GQA-LT and VG8K-LT.
Tables 1 and 2 shows the number of classes in various categories for GQA-LT and VG8K-LT respectively. The split is shown
for both the training and testing data, and also the number of synsets in all the categories is also shown. For full splits and
detailed information about this, please refer to the csv files under ’./histograms’, provided in the supplementary material.

5. Object/Subject/Relationship class frequencies for our GQA-LT and VG8K-LT Benchmarks
The Fig 4 shows the Subject, Object, Relationship class frequencies for GQA-LT and VG8K dataset. While the values

here shown in graphs are in log scale, the frequencies for sbj/obj/rel for both of the dataset can be found in the code folders



Table 1: GQA-LT split

Number of classes Number of unique synsets

subjects/objects relations subjects/objects relations

many med few many med few many med few many med few

Train 75 223 1394 15 43 252 71 207 1078 11 33 143
Test 75 223 1188 15 43 232 71 207 955 11 33 132

Table 2: VG8K-LT split

Number of classes Number of unique synsets

subjects/objects relations subjects/objects relations

many med few many med few many med few many med few

Train 154 464 4639 72 212 1715 152 447 2628 38 93 358
Test 154 460 2453 72 214 1143 152 444 1678 38 93 290

Figure 4: The histograms showing the sbj, rel, obj frequencies for the GQA-LT and VG8K-LT dataset. The figures shows the
frequency values in log scale. The actual frequencies for each class are attach in csv format.

provided alongside the supplementary submission.

6. Human Subjects Experiment Setup.

We randomly selected 100 examples from Visual Genome dataset [2] and evaluated 5 hypotheses for each. Out of these
5 hypotheses, 1 was the Ground Truth (GT) and the other 4 were top predictions from [8] excluding GT. In this experiment
we had 3 human subjects, who were asked to evaluate each hypothesis from a scale of 1 to 5, 1 being the worst and 5 the
best. The human subjects were blind to which hypothesis was the ground truth and which were a prediction by the model [8].



Figure 5: Precision and Recall scores of each of the human subjects (gray, blue, red) and the ground truth (gold) against the
Human-GT

Afterward we created a new ground truth from the majority voting of the 3 subjects and the ground truth on each example,
we call this new ground truth Human-GT.

We then computed the precision and recall of each of the human subjects and the ground truth against the Human-GT and
we show the recall and precision in Fig 5. If we look at Fig 5 we can see that the ground truth has a very low recall compared
with the human subjects. This implies that a very large percentage of the hypotheses labeled as incorrect by the ground truth
is, in fact, correct (high number of false negatives). This confirms our suspicion that the GT on its own is not sufficient to
gain a deep understanding of how the models are performing on this problem. Note, because the gap in recall between the
GT and human subjects was large enough, 100 random examples are enough to reach confidence level of 99.73%. We did
not observe a difference in precision between the human subjects and the GT. This implies is that the labels that GT labels as
correct are also considered correct by the Human-GT (low number of false positives).

7. Motivation For Word2Vec and Wordnet Metrics
The ground truth by construction assumes that there is one and only one right answer. Fig 6 shows an example of such

case. In this case, the top 5 predictions from the model are all correct and very plausible. It’s very hard to say any of these
are wrong. There are many examples as the one in Fig 6 throughout the 2 datasets (GQA-LT and VG8K-LT). This illustrates
that the ground truth with only one correct answer is fundamentally flawed for this task, and this is the motivation behind our
proposed metrics.

8. Additional Results on GQA-LT and VG8K-LT
Table 6 shows some of the main models from the paper on GQA-LT dataset. The scores shown in Table 6 are calcu-

lated over several runs for each model (between 2 and 3 runs) and the mean and confidence intervals (calculated at confi-
dence=95%) are reported. The table shows that most improvement are outside the margin of error. This further strengthens
our confidence in the results reported in the main paper. In Table 5 shows the average per-class word similarity measured
through wordnet and word2vec metrics for the subject and object categories. We can see the pattern more consistently here,
where the models with the VilHub loss added have higher average per-class word similarity to the ground truth.

Table 3 and 4 show the performance on subject, relation, object (SRO) triplets scores on GQA-LT and VG8K-LT, respec-
tively. An SRO triplet prediction is considered correct if the prediction for the subject, object, and relation are all correct. We
separate the SRO triplets into few, medium, and many shots based on how many times the SRO triplet occures in the training
data. As we did with the subject/object and relation tables in the main paper, we determine many, medium, few shots based
on frequency percentile. (many: top 5% most frequent, medium: middle 15%, and few: bottom 80%). Table 3 and 4 show
that adding the VilHub loss and RelMix augmentation increases the performance on almost all the cases.

Tables 7, 8 and 9 show the compositional results (the results when grouped by SO, SR and OR) on many, med and few
categories respectively. In all these, we see a clear gain when adding VilHub & RelMix on top of various base models.



Figure 6: This example is meant to show how some boxes can have multiple good answers. The top 5 predictions for the
above box ares: [Baseball Cap, Cap, Green Hat, Hat, Head]. This shows how it is unreasonable to evaluate this task assuming
there is only one correct answer.

Table 3: Average per-relationship triplet accuracy on GQA-LT using Synsets, showing benefit to adding VilHub and RelMix
in most models

Model many median few all

LSVRU [8] 42.8 25.8 9.0 13.2
LSVRU + VilHub 44.3 30.0 11.7 16.0
LSVRU + VilHub + RelMix 45.5 30.9 12.2 16.6

Focal Loss [3] 43.2 27.5 9.7 14.1
Focal Loss + VilHub 44.4 29.8 11.5 15.9

OLTR [4] 42.6 26.0 9.1 13.3
OLTR + VilHub 41.8 26.4 9.7 13.7

WCE 19.4 14.8 7.6 9.2
WCE + VilHub 18.0 14.8 7.9 9.4
WCE + VilHub + RelMix 27.3 21.1 10.2 13.2

DCPL [1] 33.7 20.2 7.3 10.6
DCPL + VilHub 29.3 19.6 7.8 10.6
DCPL + VilHub + RelMix 31.3 20.8 8.3 10.9

EQL [7] 44.4 30.0 11.7 16.0
EQL + VilHub 42.3 31.1 12.8 16.8
EQL + VilHub + RelMix 44.6 31.8 12.9 17.0



Table 4: Average per-relationship triplet accuracy on VG8K-LT using Synsets, showing benefit to adding VilHub and RelMix
for most models

Model many median few all

LSVRU [8] 24.0 10.1 3.1 5.2
LSVRU + ViLHub 28.3 13.3 4.1 6.7
LSVRU + VilHub + RelMix 29.1 13.7 4.3 6.9

Focal Loss [3] 21.2 9.7 2.9 4.9
Focal Loss + ViLHub 25.1 11.4 3.5 5.7

WCE 12.1 5.8 2.4 3.4
WCE + ViLHub 11.5 5.6 2.3 3.3
WCE + VilHub + RelMix 14.6 6.9 3.1 4.1

DCPL [1] 15.8 6.6 2.5 3.8
DCPL + ViLHub 17.1 7.2 2.5 4.0
DCPL + VilHub + RelMix 17.6 7.3 2.6 4.1

Table 5: Per-class word similarity on subjects/objects in GQA-LT, models with ViLHub show higher average word similarity

Models lch wup lin path w2v

LSVRU [8] 51.2 59.4 36.8 27.5 45.2
LSVRU + VilHub 53.4 61.3 39.5 30.6 47.1

Focal Loss [3] 51.8 60.0 37.5 28.3 45.7
Focal Loss + VilHub 53.2 61.1 39.1 30.3 47.0

WCE 53.5 61.1 39.4 31.8 47.8
WCE + VilHub 54.8 62.1 41.0 33.5 49.2

DCPL [1] 49.1 57.4 34.1 25.8 43.0
DCPL + VilHub 50.4 58.4 35.5 27.3 44.7

Table 6: Average per-class accuracy on GQA-LT based on Synsets, performed over several runs for each model and shows
the mean and confidence intervals calculated at confidence=95%

sbj/obj rel

Model many medium few all many medium few all

LSVRU [8] 68.6±0.6 38.1±2.2 7.1±0.4 14.8±0.7 62.4±0.28 16.0±0.83 7.4±1.2 11.6±1.1
LSVRU + VilHub 69.3±0.6 40.4±0.9 8.0±0.2 15.9±0.2 63.5±0.1 17.5±0.2 7.5±0.3 11.8±0.3

Focal Loss [3] 68.7±0.6 39.9±0.8 7.6±0.1 15.5±0.2 60.5±0.2 15.9±0.6 7.6±0.5 11.6±0.5
Focal Loss + VilHub 69.3±0.3 44.0±0.8 9.7±0.2 17.8±0.3 62.8±0.5 14.2±0.3 7.2±0.5 11.1±0.5

WCE 52.9±1.5 40.2±2.0 13.7±0.5 19.7±0.5 52.2±2.2 37.9±3.7 14.5±2.5 20.0±2.2
WCE + VilHub 50.8±1.2 43.4±1.2 16.9±0.9 22.6±0.5 53.4±0.8 37.2±2.2 14.4±1.7 19.8±1.6



Table 7: The table shows the average per-group relationship triplet performance for the case of ’many’ occurring classes on
GQA-LT based on synsets. The results are shown when grouped by Subject & Object (SO), Subject & Relation (SR), Object
& Relation (OR). The table shows a performance increase with the addition of RelMix + VilHub

Model SO SR OR

LSVRU [8] 38.6 30.3 31.5
LSVRU + VilHub 40.5 32.8 33.7
LSVRU + VilHub + RelMix 41.7 33.8 33.8

FL [3] 39.2 31.1 32.3
FL+VilHub 40.5 32.8 33.7

WCE 18.3 17.3 17.2
WCE + VilHub 17.0 17.0 16.8
WCE + VilHub + RelMix 25.1 23.1 22.5

DCPL [1] 30.2 24.7 25.1
DCPL + VilHub 26.8 23.4 23.2
DCPL + VilHub + RelMix 28.7 24.4 24.9

Table 8: The table shows the average per-group relationship triplet performance for the case of ’medium’ occurring classes
on GQA-LT based on synsets. The results are shown when grouped by Subject & Object (SO), Subject & Relation (SR),
Object & Relation (OR). The table shows a performance increase with the addition of RelMix + VilHub

Model SO SR OR

LSVRU [8] 21.8 11.3 10.8
LSVRU + VilHub 25.7 14.2 13.9
LSVRU + VilHub + RelMix 26.6 14.7 13.8

FL [3] 23.2 11.9 11.5
FL + VilHub 25.5 14.1 13.7

WCE 13.7 9.4 9.4
WCE+ViLHub 13.7 9.6 9.5
WCE + VilHub + RelMix 18.1 12.8 13.0

DCPL [1] 17.2 9.2 9.0
DCPL + VilHub 17.2 9.5 9.2
DCPL + VilHub + RelMix 18.1 9.9 9.8



Table 9: The table shows the average per-group relationship triplet performance for the case of ’few’ occurring classes on
GQA-LT based on synsets. The results are shown when grouped by Subject & Object (SO), Subject & Relation (SR), Object
& Relation (OR). The table shows a performance increase with the addition of RelMix + VilHub

Model SO SR OR

LSVRU [8] 7.5 4.3 4.2
LSVRU + VilHub 10.2 5.3 5.2
LSVRU + VilHub + RelMix 10.5 5.5 5.6

FL [3] 8.2 4.3 4.2
FL + VilHub 10.0 5.1 4.9

WCE 7.1 4.2 3.6
WCE + VilHub 7.4 4.7 3.9
WCE + VilHub + RelMix 9.5 5.7 5.1

DCPL [1] 6.3 3.3 3.2
DCPL + VilHub 6.8 3.7 3.4
DCPL + VilHub + RelMix 7.5 3.9 4.0



9. Further discussion of RelMix Augmentation

Table 10: Some ablations for different proportions of augmented data being added to the original data

sbj/obj rel

Model many medium few all many medium few all

LSVRU [8] 68.3 37.0 6.9 14.5 62.6 15.5 6.8 11.0

LSVRU + RelMix (η = 30%) 68.2 37.5 8.5 15.7 62.5 15.6 6.8 11.0
LSVRU + RelMix (η = 50%) 68.2 37.7 9.3 16.5 62.6 16.0 6.9 11.1
LSVRU + RelMix (η = 70%) 68.5 37.7 9.1 16.3 62.8 16.2 6.9 11.2

In Table 10, we evaluate RelMix performance when different proportions (η = 30%, 50%, 70%) of augmented data (w.r.t
the original training size) is added to the original data mix. As can be seen from Table 10, we see slightly better results for
η = 50% as compared to other proportions. Apart from this as we increase the augmentation proportion we see a slight
gain in training time because of the increment in training data (original + augmented). Taking all this in account, we chose
η = 50% for all the experimental results mentioned in Table 1&2 in the main paper.

Choice of λ in Eq.6 in main paper: We validate various values for our mixing parameter λ ranging from 0.5− 0.9 and
also try random value assignment within the range. We obtain the optimal results on tail classes being when λ is in the range
0.7 − 0.8, with the difference being of approximately 0.5% in the few category and 0.3% overall. This is since a bigger λ
value leads to higher percentage of features from xi augmented from tail categories.

10. Additional Results on VG200 (far more balanced than GQA-LT and VG8K-LT)

Table 11: The main results on VG200 dataset.

Graph Constraint No Graph Constraint

Models SGCLS PRDCLS SGCLS PRDCLS

Recall at 20 50 100 20 50 100 50 100 50 100

LSVRU [8] 36.0 36.7 36.7 66.8 68.4 68.4 - - - -
LSVRU + VilHub 35.9 36.7 36.7 66.6 68.4 68.4 48.5 49.8 93.4 96.7
LSVRU + VilHub + RelMix 36.2 36.9 36.9 66.9 68.5 68.5 48.8 50.1 93.5 96.8

We also evaluate the performance of our proposed VilHub loss with RelMix augmentation on VG200 dataset. It contains
most frequent 150 objects and 50 relations, and each category frequency in this dataset is considerably more balanced than
in GQA-LT and VG8K-LT. We follow the same data split as in [8]. Table 11 shows the performance of our model on top
of LSVRU when evaluated on VG200. As can be clearly seen, the proposed VilHub+RelMix does not deteriorate the base
model’s performance on both the metrices (SGCLS and PRDCLS) and even manages to slightly improve upon it. However,
a thing to keep in mind here is that our model manages to make the final prediction much more balanced (as can be seen from
Table 1 and 2 in the paper) while not deteriorating the performance on these standard metrices (which are inherently much
more biased towards head class classification).

11. Further Analysis
Figure 8 shows the same comparision done in the main paper in Figure 4, but for several other models, comparing the

results with and without using the VilHub loss. We can observe that the same pattern of improving the performance on
medium and few shots seen in the main paper still holds true for other models. The only exception is the performance on
relationships for DCPL vs DCPL + VilHub, where we see classes worsening on the few category. However, VilHub loss still
shows performance improvement on the medium category.

Figure 7 shows the comparision between LSVRU vs LSVRU + VilHub for VG8K-LT dataset. We can see that adding the
VilHub improves performance on the medium and few categories, as it did on GQA-LT.



Many Medium Few

Many Medium Few

(a) LSVRU vs. LSVRU + ViLHub for S/O (upper) and R (lower) on VG8K-LT

Figure 7: Comparisons of subject/object (upper) and relations (lower) performances between LSVRU model with and without
ViLHub on VG8K-LT dataset. Note that the number of classes is slightly less than the listed number of classes for VG8K-LT,
this is because these are the classes present in the test set only.

Figure 9 shows the average precision metric on the tail for W2V trained on Google News (W2V-GN). It shows the same
patterns as in Figure 5 in the main paper. Note that the scores using W2V-GN is less than when using W2V-VG. This is
because W2V-VG is trained on more a relevant data to the task (Visual Genome) than W2V-GN.

Figure 10 shows the same analysis done in the main paper section 4.5 Figure 5 but repeated for the head (top 20% of
classes). We can observe the same patterns shown in the main paper, all the models are doing much better than the exact
matching metric implies.

Figure 11 shows the average precision analysis for tail classes using the Relmix approach in combination with ViLHub.
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(a) FL vs. FL + ViLHub for S/O (upper) and R (lower) on GQA-LT

(b) DCPL vs. DCPL + ViLHub for S/O (upper) and R (lower) on GQA-LT

Figure 8: Comparisons of subject/object (upper) and relations (lower) performances between several models with and without
ViLHub on GQA-LT dataset. We report the performance for all classes sorted by frequency. The distribution of classes for
both figures is shown in the background. Note that the number of classes is slightly less than the listed number of classes for
GQA-LT, this is because these are the classes present in the test set only.

(a) (b)

Figure 9: Average precision analysis on the tail classes (lower 80% on GQA-LT dataset using a variety of metrics.
calculated using W2V trained Google News, showing the same pattern as the figures in the main paper



Figure 10: Average precision analysis on the head classes (top 20% on GQA-LT dataset using a variety of metrics. We
visualize results using exact similarity metrics, W2V-VG, and average of 6 WordNet metrics. The models using VilHub show
consistently superior performance on the tail, when compared to similar models without the VilHub.



Figure 11: Average precision analysis on the tail classes (bottom 80% of classes) on GQA-LT dataset using the Relmix
approach combined with ViLHub the figure shows the incremental improvement from adding Relmix augmentation and
then ViLHub regularization


